标题: 闲谈门萨式测试与高阶等差数列
https://scz.617.cn/misc/202112152114.txt
这篇是为数学爱好者续写的。微软资深程序员Larry Osterman写过一篇blog
My son is SUCH a geek (in a good way) - [2007-11-07]
文中用"连续差分法"求解高阶等差数列的通项公式。我展开一下,做点数学科普。
先介绍下科普背景。这些年小学阶段有一些"班",这些班有一些所谓的数学测试,给 定一个数字序列,问下一个数字应该是什么。一般出题方认定只有一个"标准答案", 但从数学角度看,这种题有无穷多种逻辑自洽的答案,如果真是数学题,每给出一个 答案就要加一些约束条件。这是一种扯淡的门萨式测试,Leo Davidson喷得精彩,我 引用一下:
这就是为什么我不能忍受那些门萨式测试,这些自作聪明的家伙认为,你应该找出最 简单、最显而易见的答案。但简单性和显而易见性完全是主观的,与数学几乎无关。
Larry Osterman的儿子Daniel在他五年级时遇到过这样一个数字序列
79 561 2279 6445 14679 29009
他当时的数学老师Bob Whittemore教了他一种算法,用于寻找该数字序列的"规律", 套用中学数学术语,即根据已知条件求解该数列通项公式。考虑到五年级这个前提, 没有其他约束条件是可以理解的。
求解过程大致如下
x f(x) 1 79 2 561 482 3 2279 1718 1236 4 6445 4166 2448 1212 5 14679 8234 4068 1620 408 6 29009 14330 6096 2028 408 n=1 n=2 n=3 n=4
第1列是x,第2列是f(x),认为它是一个任意数列。第3列是第2列相邻两项的差形成 的新数列,依次类推。将第3列视为原数列(第2列)的第1次迭代求差,直至第n次迭代 求差后出现等差数列,停止迭代求差,表示f(x)的最高次数是n,x^n的系数是"稳定 差"除以n!。
本例n=4,稳定差等于408,408/4!=408/24=17,f(x)的最高次项是17*x^4。
现在将原数列(第2列)各项减去17*x^4,得到一个新数列,用同样的办法求解新数列 的最高次项。显然,新数列经过3次迭代求差会出现稳定差。
x f(x)-17x^4 1 79-17=62 2 561-1716=289 227 3 2279-1781=902 613 386 4 6445-17256=2093 1191 578 192 5 14679-17625=4054 1961 770 192 6 29009-171296=6977 2923 962 192 n=1 n=2 n=3
此次n=3,稳定差等于192,192/3!=192/6=32,"f(x)-17x^4"的最高次项是32x^3。
x f(x)-17x^4-32x^3 1 62-32=30 2 289-328=33 3 3 902-3227=38 5 2 4 2093-3264=45 7 2 5 4054-32125=54 9 2 6 6977-32*216=65 11 2 n=1 n=2
此次n=2,稳定差等于2,2/2!=1,"f(x)-17x^4-32x^3"的最高次项是1*x^2。
x f(x)-17x^4-32x^3-x^2 1 30-1=29 2 33-4=29 3 38-9=29 4 45-16=29 5 54-25=29 6 65-36=29
现在有
f(x)-17x^4-32x^3-x^2=29
求得数列通项公式
f(x)=17x^4+32x^3+x^2+29
上述算法的数学术语是"连续差分法",英文是"Method of Successive Differences"。
Daniel的轶事到此就结束了,后面是其他展开。
f(1)到f(6)都符合已知值
f(1)=171^4+321^3+1^2+29=79 f(6)=176^4+326^3+6^2+29=29009
由于有数列通项公式,可以接着求f(7)
f(7)=177^4+327^3+7^2+29=51871
相当于回答"下一个数字是什么"。但是,你再好好想想"连续差分法"的求解过程,完 全可以给出一个与f(7)不同的数字,然后用"连续差分法"求解"新数列通项公式",假 设是g(x),g(1)到g(6)与f(1)到f(6)相符,但g(7)不等于f(7)。g(7)这个答案逻辑自 洽,从数学上讲,你不能说g(7)不是答案的一种。
随手在百度上搜了一个类似的题,问,已知数列
1 5 18 59 184
下一个数字应该是什么?再次演示"连续差分法"
x f(x) 1 1 2 5 4 3 18 13 9 4 59 41 28 19 5 184 125 84 56 37 n=1 n=2 n=3 n=4
第1列是x,第2列是f(x),认为它是一个任意数列。第3列是第2列相邻两项的差形成 的新数列,依次类推。将第3列视为原数列(第2列)的第1次迭代求差,直至第n次迭代 求差后出现等差数列,停止迭代求差,表示f(x)的最高次数是n,x^n的系数是"稳定 差"除以n!。
本例n=4,稳定差等于37,37/4!=37/24,f(x)的最高次项是37/24*x^4。
现在将原数列(第2列)各项减去37/24*x^4,得到一个新数列,用同样的办法求解新数 列的最高次项。显然,新数列经过3次迭代求差会出现稳定差。
x f(x)-37/24x^4 1 1-37/24=-13/24 2 5-37/2416=-472/24 3 18-37/2481=-2565/24 4 59-37/24256=-8056/24 5 184-37/24*625=-18709/24
为将来计算方便,令
g(x)=-4!3!2!1!(f(x)-37/24x^4) g(x)=-2462(f(x)-37/24x^4) g(x)=-288(f(x)-37/24*x^4)
为什么要乘以"4!3!2!1!"呢?因为"连续差分法"确定各次项系数时要除以n!,我 不想约分来约分去的,乘以"4!3!2!1!"可以确保后续计算不再出现分数,等求出 g(x)的多项式表达,再做简单变换求f(x)。
有
x g(x) 1 13/24288=156 2 472/24288=5664 5508 3 2565/24288=30780 25116 19608 4 8056/24288=96672 65892 40776 21168 5 18709/24*288=224508 127836 61944 21168 n=1 n=2 n=3
此次n=3,稳定差等于21168,21168/3!=21168/6=3528,g(x)的最高次项是3528*x^3。
x g(x)-3528x^3 1 156-3528=-3372 2 5664-35288=-22560 -19188 3 30780-352827=-64476 -41916 -22728 4 96672-352864=-129120 -64644 -22728 5 224508-3528*125=-216492 -87372 -22728 n=1 n=2
此次n=2,稳定差等于-22728,-22728/2!=-22728/2=-11364,"g(x)-3528x^3"的最 高次项是-11364x^2。
x g(x)-3528x^3+11364x^2 1 -3372+11364=7992 2 -22560+113644=22896 14904 3 -64476+113649=37800 14904 4 -129120+1136416=52704 14904 5 -216492+1136425=67608 14904 n=1
此次n=1,稳定差等于14904,14904/1!=14904,"g(x)-3528x^3+11364x^2"的最高 次项是14904*x。
x g(x)-3528x^3+11364x^2-14904x 1 7992-14904=-6912 2 22896-149042=-6912 3 37800-149043=-6912 4 52704-149044=-6912 5 67608-14904*5=-6912
现在有
g(x)-3528x^3+11364x^2-14904*x=-6912
g(x)=3528x^3-11364x^2+14904*x-6912
g(x)=-288(f(x)-37/24x^4)
f(x)-37/24x^4=-3528/288x^3+11364/288x^2-14904/288x+6912/288
求得数列通项公式
f(x)=37/24x^4-49/4x^3+947/24x^2-211/4x+24
上式不方便计算,换一个
f(x)=(444x^4-3528x^3+11364x^2-14904x+6912)/288
验证
f(1)=(4441^4-35281^3+113641^2-149041+6912)/288=1
f(5)=(4445^4-35285^3+113645^2-149045+6912)/288=184
求f(6)
f(6)=(4446^4-35286^3+113646^2-149046+6912)/288=486
486只是答案之一,但不是唯一答案,有无穷多种答案。
接下来科普一下"高阶等差数列",不做严格数学论述,拣要点讲讲。假设原数列是这 种
79 561 2279 6445 14679 29009
或
1 5 18 59 184
"连续差分法"图示中"n=1"的列称为原数列的"1阶差数列","n=4"的列称为原数列的 "4阶差数列",假设"n=r"时首次出现"非零稳定差",则称原数列为"r阶等差数列"。 中学阶段所学的非常数等差数列就是"1阶等差数列"(不是"1阶差数列"),常数序列可 以定义成"0阶等差数列"。
我国中学阶段常规教学会讲"1阶等差数列"通项公式,但不会讲如何求解高阶等差数 列通项公式,事实上有成熟的定理,不需要显式动用"连续差分法"。
设{an}是r阶等差数列,其各阶等差数列首项为d1、d2、...、dr,则数列的通项公式 是
an=a1+C(n-1,1)d1+C(n-1,2)d2+...+C(n-1,r)*dr
其中
C(n,m)=n!/m!/(n-m)!
即组合公式。只看这个公式可能有些懵逼,举个例子。
x f(x) 1 1 2 5 4 3 18 13 9 4 59 41 28 19 5 184 125 84 56 37 n=1 n=2 n=3 n=4
n=4 a1=1 d1=4 d2=9 d3=19 d4=37
an=1+C(n-1,1)4+C(n-1,2)9+C(n-1,3)19+C(n-1,4)37
或者写成
f(x)=1+C(x-1,1)4+C(x-1,2)9+C(x-1,3)19+C(x-1,4)37
验证一下
f(5)=1+C(4,1)4+C(4,2)9+C(4,3)19+C(4,4)37 =1+4!/1!/3!4+4!/2!/2!9+4!/3!/1!19+4!/0!/4!37 =1+24/1/64+24/2/29+24/6/119+24/1/2437 =184
f(6)=1+C(5,1)4+C(5,2)9+C(5,3)19+C(5,4)37 =1+5!/1!/4!4+5!/2!/3!9+5!/3!/2!19+5!/4!/1!37 =1+120/1/244+120/2/69+120/6/219+120/24/1/37 =486
r阶等差数列{an}的通项公式一定是关于正整数n的r次多项式,事实上
f(x)=1+C(x-1,1)4+C(x-1,2)9+C(x-1,3)19+C(x-1,4)37 =(444x^4-3528x^3+11364x^2-14904x+6912)/288
本文直接引用了数学结果,没有给出数学证明,有兴趣者去看相关代数书籍好了。
数值分析中通过已知离散数据求未知数据的过程或方法称为插值法。用解析几何的绘 图来看,已知若干离散点坐标(xi,yi),求一条曲线,同时经过所有已知离散点。显 然,有无数条曲线经过所有已知离散点。这更直观地表明"下一个数字是什么",有无 穷多的答案。每条曲线都对应某一种插值法,最扯淡的当然是线性插值法,将所有已 知离散点用折线连起来,这种插值法完全没有意义。
关于插值法,可以搜多项式插值法、牛顿插值法、拉格朗日插值法等关键字。我不是 数学系的,数值分析这块白瞎,这些玩意儿的科普我就别丢人现眼了。但我会讲数学 八卦啊,各位坐好了听。
尊重历史的话,牛顿插值法应该称为"格雷戈里-牛顿公式",格雷戈里和牛顿各自独 立给出该公式。但牛B顿这位,大家都认识的吧,神特么废话,属于"天不生牛顿、万 古如长夜"的主儿,他在他那套想不知道也难的《自然哲学的数学原理》第三卷引理 五里发表了牛顿插值法,后面的事大家都知道了。这个故事告诉我们,跟牛B顿抢C位, 你得是莱布尼茨这种级数的,才好平分秋色。要么降一档,也得是胡克这种级数的, 让牛B顿反讽地说句,如果我能看得更远一点的话,是因为我站在巨人的肩膀上。一 般人真抢不过牛B顿。
格雷戈里(James Gregory)其实也很厉害。他小时候跟母亲学习几何学,妥妥的学霸 家庭。应该是早期发明反射望远镜的人,后来反射望远镜以他的名字命名。这哥们是 个狂热天文爱好者,由于长期使用望远镜进行天文观测而导致眼疲劳,结果眼瞎了。 后来在爱丁堡去世。嗯,女魔头在那里读过书。
拉格朗日插值法最早被一个英国数学家发现,四年后由欧拉再次发现,又过了十二年, 拉格朗日在他的《师范学校数学基础教程》中发表该插值法。最后出场的抢到了C位, 该插值法被命名为拉格朗日插值法。话说能抢过欧拉,这主要凭运气,虽然拉格朗日 实力强悍,但欧拉是那么好相与的?欧拉是谁?数学史上用手数得过来的主儿之一。
当然,我对拉格朗日很崇拜。拉格朗日平动点L4、L5的理论测算及科学运用,完美展 示了自然哲学的数学原理,一种科学的奇迹。
过去是戏不够、烟来凑,我这是典型的没有数学天赋的货,只能东拉西扯些有的没的。